光焱科技 胜焱电子科技 Enlitech
Previous slide
Next slide
Tell us more, we’ll
Enlighten Your Ideas!
内容

Adv. Mater._ 陕西师范大学冯江山&刘生忠&扬州大学方志敏团队:提高NiOx 基反式表面重构助高效稳定钙钛矿太阳能电池

Enlitech-顶尖团队评分!

研究背景

PSCs 因其高效率、低成本等优点成为光伏领域的研究热点,并展现出巨大的商业化潜力。在众多 PSCs 结构中,反式结构(p-i-n)因其制备工艺简单、可与柔性衬底兼容等优势,备受关注。与传统的正置结构 (n-i-p) 相比,反式结构 PSCs 具有更高的填充因子 (FF) 和更低的迟滞效应,使其在柔性、透明和叠层太阳能电池等领域具有更广阔的应用前景。 

然而,反式 PSCs 的性能仍落后于常规结构,其主要原因之一是界面缺陷导致的非辐射复合损失。为了提高反式 PSCs 的性能,研究人员通常采用功能剂进行表面修饰,例如在钙钛矿/空穴传输层界面引入有机小分子来钝化缺陷,提高电荷提取效率。然而,分子的固有特性对最终器件性能的影响却被忽视了。一些功能剂,例如常用的空穴传输材料 bathocuproine (BCP),本身具有 n 型掺杂特性,可能会对器件性能产生不利影响。当 BCP 直接与钙钛矿接触时,它倾向于从钙钛矿中提取电子,导致钙钛矿表面带正电,形成不利于空穴传输的能带弯曲,从而降低器件性能。

研究方法

1.表面重构策略:化解 LC 分子负面影响,变废为宝 
为了解决上述问题,冯江山、刘生忠和方志敏团队提出了一种表面重构策略,将 BCP 分子从潜在的 n 型掺杂剂转化为高效的钝化剂。该策略巧妙地利用溶剂和欠配位 Pb2+ 离子,将原本可能导致 n 型掺杂的 LC 分子转化为高效的钝化剂,实现了器件性能的突破。该策略包含两个关键步骤: 
 
  • 溶解:首先,将 BCP 分子溶解在溶剂中,使其从钙钛矿表面脱附。该步骤的关键在于选择合适的溶剂,既能有效溶解 BCP,又不破坏钙钛矿薄膜的结构。研究人员筛选了多种溶剂,最终发现异丙醇 (IPA) 具有最佳的溶解性和相容性。 
  • 捕获:利用钙钛矿表面的欠配位 Pb2+ 离子捕获溶解的 BCP 分子,使其重新结合到钙钛矿表面,形成更加稳定的化学键,并有效钝化缺陷。该步骤的关键在于控制溶剂的挥发速度,使 BCP 分子能够在钙钛矿表面均匀分布,并最大程度地与欠配位 Pb2+ 离子结合。埋底界面和体相钝化:双重策略抑制非辐射复合。通过这种方法,BCP 分子不再直接接触电子传输层,避免了 n 型掺杂效应,同时可以有效地钝化钙钛矿表面的缺陷,提高器件的 Voc 和 FF。 
 
2.作用机制分析:多重表征揭示性能提升的关键 
 
  • 飞行时间二次离子质谱 (TOF-SIMS) 证实了 BCP 分子在钙钛矿表面的重新分布。与直接旋涂 BCP 的样品相比,表面重构处理后的样品中 BCP 分子更加均匀地分布在钙钛矿表面,表明 BCP 分子与钙钛矿形成了更强的化学键合。 
  • 扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 显示 BCP 处理后的钙钛矿薄膜具有更平整的表面形貌和更大的晶粒尺寸,这有利于减少晶界缺陷和提高电荷传输效率。 
  • 紫外-可见吸收光谱和反射光谱 表明 BCP 处理可以提高钙钛矿薄膜的光吸收效率,从而提高器件的 Jsc。 
  • 紫外光电子能谱 (UPS) 和电容-电压 (C-V) 测量 揭示了 BCP 处理可以优化器件的能级排列,减少缺陷密度,从而提高器件的 Voc 和 FF。 
  • 稳态和时间分辨光致发光 (PL) 光谱 表明表面重构处理可以有效钝化钙钛矿表面的缺陷,延长载流子的寿命,从而提高器件的效率。 
  • 电化学阻抗谱 (EIS) 测量进一步证实表面重构策略可以降低器件的电荷传输阻抗,提高电荷提取效率,从而提升器件的 FF。 

研究结果与讨论

器件性能提升:效率和稳定性双双突破。
研究结果表明,表面重构策略可以显著提高 NiOx 基反式 PSCs 的器件性能。基于该策略制备的器件实现了 25.64% рекорд 效率,开路电压 (Voc) 明显提高,短路电流 (Jsc) 达到 25.61 mA/cm2,填充因子 (FF) 高达 85.8%。此外,器件在暴露于环境条件约 1500 小时后仍保持了 80% 以上的初始效率,展现出优异的长期稳定性。瞬态光致发光 (TRPL) PLQY 测试结果表明,CsFa 钝化有效地抑制了非辐射复合,延长了载流子寿命,从而提高了器件效率。热导纳谱 (TAS) 测量进一步证实,CsFa 处理后的钙钛矿薄膜具有最低的缺陷态密度。

结论与展望

这项研究开发了一种简单有效的表面重构策略,通过减轻 LC 分子的不利影响,显著提高了 NiOx 基反式 PSCs 的效率和稳定性。该策略为制备高性能反式 PSCs 提供了新思路,并为钙钛矿光伏技术的进一步发展奠定了基础推动钙钛矿太阳能电池技术的商业化应用。 

Fig S4_陕西师范大学冯江山&刘生忠&扬州大学方志敏团队

Fig S4_展示了对照样品和 CL-BCP 样品的电流电压(J-V)迟滞曲线。说明表面重构策略可以有效地减少器件的 J-V 迟滞现象,这表明 CL-BCP 器件具有更好的电荷提取能力和更低的缺陷密度。 

Fig S5_陕西师范大学冯江山&刘生忠&扬州大学方志敏团队

Fig S5_ 五种不同器件结构的光伏参数,包括对照样品(CT)、在电子传输层上旋涂 BCP 的样品(E-OS-BCP)、在电子传输层上经过表面重构处理的样品(E-CL-BCP)、在钙钛矿层上旋涂 BCP 的样品(S-OS-BCP)和在钙钛矿层上经过表面重构处理的样品(S-CL-BCP)。表明表面重构策略可以显着提高器件的效率。S-CL-BCP 器件的效率最高,这表明将 BCP 应用于钙钛矿层并进行表面重构处理是最佳的器件结构。

Fig S9(a)_陕西师范大学冯江山&刘生忠&扬州大学方志敏团队

Fig S9_(a) 开路电压随光强变化的关(b) 暗电流电压 (J-V) 曲线,以及 (c) 器件在空气中的稳定性测试结果。表明表面重构策略可以提高器件的 Voc、降低暗电流,并提升器件的长期稳定性。

原文出處:

ADVANCED MATERIALS. First published: 03 May 2024 

https://onlinelibrary.wiley.com/doi/10.1002/adma.202403682

Loading

发表回复